
Machine Learning Theory and
Frameworks

In less than two hours

Quick Recap: ML

f(x)X Y

X Y

Good?

Bad?

Error?

Dataset

Training

Quick Recap: SGD

Most of the times we use SGD (Stochastic Gradient Descend) to train our ML models

f(x)
X Y

P

E(Y)

Quick Recap: SGD

x0

x1

Quick Recap: SGD

x0

x1

k

E

Quick Recap: SGD

Wrong!

Quick Recap: SGD

k

E

Quick Recap: SGD

You are computing a gradient

OK!

Sounds fair!

Of course!

No problem!

Never forget this!

Quick Recap: SGD

You are computing a gradient

What is actually going on?

X

f(x)

Y

E

mean(...)

Why is stochastic?

X

f(x)

Y

E

Using all the dataset is impossibile

So we use little chunks called batches

mean(...)

Artificial Neural Networks: Topological view

y0

y1

x0

x1

x2

Artificial Neural Networks: Mathematical View

NN Architectures can be wild!

X X'

Auto Encoders

NN Architectures can be wild!

X

GANs

Discriminator

GeneratorZ Perceptual NN

Do I need to compute the gradients by hand?

Nope

All ML frameworks use Computational Graphs

Computational Graphs

+

x y

x+y

*

x y

x*y

Computational Graphs

+

a

b

a+b

1

1

*

a+b

a
(a+b)*a + y

1

1

Computational Graphs

+

a

b

a+b

1

1

*

a+b

a
(a+b)*a + y

1

1

For all the paths from y to a: multiply over the edges.

Sum all the results.

a+b +a = 2a+b

Pytorch

• Pytorch is a Computational-Graph based ML framwork

• Python interface, C++/Cuda implementation

• Object Oriented Interface

• Supports CPU/GPU/Multi-GPU transparently

• Very well documented

• Almost everything you need is implemented in it

pip install torch

Pytorch: torch.nn.Module

• forward(self, x) [not implemented]

• The forward logic of your module

• parameters(self) [implemented]

• Collection of paremters of all the class attributes

• to(self, device) [implemented]

• Move all the parameters to device

Building block for a ML architecture

Pytorch: torch.nn.Sequential

BN Lin LR Lin LR Lin SMX Y

Pytorch: torch.utils.data.Dataset

• __getitem__(self, i) [not implemented]

• You have to return a tuple with

• i-th input element of the dataset

• i-th output element of the dataset

• __len__(self) [not implemented]

• You have to return the lenght of the dataset

Abstract dataset representation

Pytorch: torch.utils.data.DataLoader

• Positional arguments

• Dataset object

• Keywords arguments

• batch_size: size of the batches

• shuffle: shuffle the dataset?

Creates batches from a Dataset object

Pytorch: Other useful stuff

• torch.nn

• package with every possibile NN building block

• torch.optim

• package with dozens of SGD algorithms

• torchvision

• package with dozens of vision datasets (MNIST, CIFAR, ImageNet,...)

In every scalar tensor you can call .backward() to compute the gradient

Let us build a simple NN

Tensorboard

• Traking and visualization framework for:
• Tracking scalars (loss, accuracy, etc...)
• Traking histograms (weights, gradients, etc..)
• Traking Computational Graphs
• Displaying text, images, etc...

• Part of the Tensorflow framework but can be used as standalone

tensorboardX (tb wrapper)

pip install tensorboardx tensorboard==1.13.0 tensorflow==1.13.1

• writer = SummaryWriter()

• writer.add_scalar(“<name>”, <value>, <iter>)

• Log a scalar values (loss, accuracy, ...)

• writer.add_image(“<name>”, <value>, <iter>)

• Log an image (PIL, np.matrix, ...)

• writer.add_histogram(“<name>”, <value>, <iter>)

• Log an histogram(weights, gradients, etc...)

• writer.add_audio

• writer.add_text

•

Let us integrate it into our NN

What if I told you...

• Training, testing and validation

• Early stopping managing

• Tensorboard logging

• Checkpointing and retraining

• ...

That exists a framework that does:

With minimal coding required

pytorch-lightning

• Define

• Model

• Dataset

• Training/testing/validation step

That's all

LightningModule interface
• forward(self, x):

• The forward logic (as in pytorch)

• *_step(self, batch, batch_nb):

• The *_step logic

• *_end(self, outputs):

• The * phase end logic

• outputs are all the intermediate returns of the *_step function calls

• *_loader(self):

• Must returns the DataLoader for the * phase

• configure_optimizers(self).

• Must return a list of optimizer to use in training

Where * can be “train” “test” or “validation”

pytorch-lightning

• The train_step() function must return a dictionary with the “loss” key

• Every function that returns a dictionary with the key

• log

• every key gets logged in tensorboard as scalar

• progress_bar

• every key get prompted in the * phase progress bar

• Training/Testing

• Instanciate your model

• Create a Trainer() object

• trainer.fit(model)

• trainer.test(model)

Let us integrate our model in pytorch-lightning

Ray

Ray is massive framework for scaling ML training

We are going to see just its “tune”

ray.tune is a framework for hyperparameters tuning at any scale (from a
single computer to clusters of GPUs)

Let us do an hyperparameter search with ray

