Machine Learning Theory and
Frameworks

In less than two hours



Quick Recap: ML
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Quick Recap: SGD

Most of the times we use SGD (Stochastic Gradient Descend) to train our ML models
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Quick Recap: SGD
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Quick Recap: SGD




Quick Recap: SGD

Wrong!



Quick Recap: SGD




Quick Recap: SGD

You are computing a gradient

X e RV OK!

Y € RM Sounds fair!
f(X) : RN = RM Of course!

P € R106 No problem!

E(Y) . RM R Never forget this!



Quick Recap: SGD

You are computing a gradient
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What is actually going on?
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Why is stochastic?

Using all the dataset is impossibile

So we use little chunks called batches




Artificial Neural Networks: Topological view
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Artificial Neural Networks: Mathematical View
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NN Architectures can be wild!

Auto Encoders

]



NN Architectures can be wild!
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Do | need to compute the gradients by hand?

Nope

All ML frameworks use Computational Graphs



Computational Graphs




Computational Graphs
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Computational Graphs

8y ___ Forall the paths from y to a: multiply over the edges.
8& ~ Sum all the results.




Pytorch

* Pytorch is a Computational-Graph based ML framwork
e Python interface, C++/Cuda implementation
* Object Oriented Interface
* Supports CPU/GPU/Multi-GPU transparently
* Very well documented
* Almost everything you need is implemented in it

pip install torch



Pytorch: torch.nn.Module
Building block for a ML architecture

* forward(self, x) [not implemented]
* The forward logic of your module

e parameters(self) [implemented]
 Collection of paremters of all the class attributes

* to(self, device) [implemented]
* Move all the parameters to device



Pytorch: torch.nn.Sequential

net

= torch.nn.Sequential(

torch.
torch.
torch.
torch.
torch.
torch.

torch.

nn.
nn.
nn.

nn
nn
nn

BatchNorm1d(784),
Linear(784, hidden_size),
LeakyReLU(),

.Linear(hidden_size, hidden_size),
.LeakyReLU(),

.Linear(hidden_size, 10),

nn.

Softmax(dim=1)




Pytorch: torch.utils.data.Dataset

Abstract dataset representation

getitem__ (self, i) [not implemented]

* You have to return a tuple with
 i-th input element of the dataset
* i-th output element of the dataset

len__ (self) [not implemented]

* You have to return the lenght of the dataset



Pytorch: torch.utils.data.DatalLoader

Creates batches from a Dataset object

e Positional arguments
* Dataset object

e Keywords arguments
* batch_size: size of the batches
* shuffle: shuffle the dataset?

torch.utils.data.DatalLoader(
dataset,

batch size=batch _size, shuffle=True




Pytorch: Other useful stuff

e torch.nn
» package with every possibile NN building block

 torch.optim
* package with dozens of SGD algorithms

e torchvision
» package with dozens of vision datasets (MNIST, CIFAR, ImageNet,...)

In every scalar tensor you can call .backward() to compute the gradient

Let us build a simple NN



Tensorboard

* Traking and visualization framework for:
* Tracking scalars (loss, accuracy, etc...)
* Traking histograms (weights, gradients, etc..)
* Traking Computational Graphs
* Displaying text, images, etc...

e Part of the Tensorflow framework but can be used as standalone



tensorboardX (tb wrapper)

writer = SummaryWriter()

» writer.add_scalar(“<name>”, <value>, <iter>)
* Log a scalar values (loss, accuracy, ...)

» writer.add_image(“<name>”, <value>, <iter>)
* Log an image (PIL, np.matrix, ...)

» writer.add_histogram(“<name>”, <value>, <iter>)
* Log an histogram(weights, gradients, etc...)

* writer.add_audio

e writer.add_text

pip install tensorboardx tensorboard==1.13.0 tensorflow==1.13.1

Let us integrate it into our NN



What if | told you...

That exists a framework that does:

* Training, testing and validation
 Early stopping managing

* Tensorboard logging

* Checkpointing and retraining

With minimal coding required



oytorch-lightning

e Define
* Model
* Dataset
 Training/testing/validation step

That's all



LightningModule interface

forward(self, x):
* The forward logic (as in pytorch)

* step(self, batch, batch_nb):

 The *_step logic
* _end(self, outputs):

* The * phase end logic

» outputs are all the intermediate returns of the * _step function calls
* loader(self):

* Must returns the Dataloader for the * phase
configure_optimizers(self).

e Must return a list of optimizer to use in training

”n

Where * can be “train” “test” or “validation”



oytorch-lightning

e The train_step() function must return a dictionary with the “loss” key

e Every function that returns a dictionary with the key
* log
» every key gets logged in tensorboard as scalar
* progress_bar
* every key get prompted in the * phase progress bar

* Training/Testing
* Instanciate your model
* Create a Trainer() object

* trainer.fit(model)
* trainer.test(model)

Let us integrate our model in pytorch-lightning



Ray
Ray is massive framework for scaling ML training
We are going to see just its “tune”

ray.tune is a framework for hyperparameters tuning at any scale (from a
single computer to clusters of GPUs)

Let us do an hyperparameter search with ray



