Machine Learning Theory and Frameworks

In less than two hours

Most of the times we use SGD (Stochastic Gradient Descend) to train our ML models

Wrong!

You are computing a gradient $X \in \mathbb{R}^N$ OK! $Y \in \mathbb{R}^M$ Sounds fair! $f(X): R^N \Rightarrow R^M$ Of course! $P \in R^{10^6}$ No problem! $E(Y): R^M \Rightarrow R$ Never forget this!

You are computing a gradient $E(y_0, y_1, \cdots, y_{M-1}) : R^M \Rightarrow R$ Y = f(X|P) $E(Y|p_0, p_1, \cdots, p_P) : R^M \Rightarrow R$ $\nabla_P E(Y|P) = \frac{\partial E(Y|P)}{\partial P} = \begin{vmatrix} \frac{\partial E(Y|P)}{\partial p_0} \\ \frac{\partial E(Y|P)}{\partial p_1} \\ \vdots \\ \frac{\partial E(Y|P)}{\partial P} \end{vmatrix}$

What is actually going on?

Why is stochastic?

Using all the dataset is impossibile

So we use little chunks called batches

Artificial Neural Networks: Topological view

Artificial Neural Networks: Mathematical View

 $x \in \mathbb{R}^N$ $y_1 = \sigma(xW_0 + b_0)$ $W \in \mathbb{R}^{N \times M}$ $y_2 = \sigma(y_1 W_1 + b_1)$ $b \in \mathbb{R}^M$ $y_3 = \sigma(y_2 W_2 + b_2)$ $\sigma: R^M \Rightarrow R^M$ $y = \sigma(xW + b)$

NN Architectures can be wild!

Auto Encoders

NN Architectures can be wild!

GANs

Do I need to compute the gradients by hand?

Nope

All ML frameworks use Computational Graphs

Computational Graphs

Computational Graphs $\frac{\partial y}{\partial a}$ $=? \quad \frac{\partial y}{\partial h}$ $y = b + (a+b) \cdot a$ =? a a+b 1 1 * +a+b +а 1 1 b

Computational Graphs

 $\frac{\partial y}{\partial a} =$ For all the paths from y to a: multiply over the edges. Sum all the results.

Pytorch

- Pytorch is a Computational-Graph based ML framwork
 - Python interface, C++/Cuda implementation
 - Object Oriented Interface
 - Supports CPU/GPU/Multi-GPU transparently
 - Very well documented
 - Almost everything you need is implemented in it

pip install torch

Pytorch: torch.nn.Module

Building block for a ML architecture

- forward(self, x) [not implemented]
 - The forward logic of your module
- parameters(self) [implemented]
 - Collection of paremters of all the class attributes
- to(self, device) [implemented]
 - Move all the parameters to device

Pytorch: torch.nn.Sequential

Pytorch: torch.utils.data.Dataset

Abstract dataset representation

- __getitem__(self, i) [not implemented]
 - You have to return a tuple with
 - i-th input element of the dataset
 - i-th output element of the dataset
- __len__(self) [not implemented]
 - You have to return the lenght of the dataset

Pytorch: torch.utils.data.DataLoader

Creates batches from a Dataset object

- Positional arguments
 - Dataset object
- Keywords arguments
 - batch_size: size of the batches
 - shuffle: shuffle the dataset?

```
torch.utils.data.DataLoader(
    dataset,
    batch_size=batch_size, shuffle=True
)
```

Pytorch: Other useful stuff

- torch.nn
 - package with every possibile NN building block
- torch.optim
 - package with dozens of SGD algorithms
- torchvision
 - package with dozens of vision datasets (MNIST, CIFAR, ImageNet,...)

In every scalar tensor you can call .backward() to compute the gradient

Let us build a simple NN

Tensorboard

- Traking and visualization framework for:
 - Tracking scalars (loss, accuracy, etc...)
 - Traking histograms (weights, gradients, etc..)
 - Traking Computational Graphs
 - Displaying text, images, etc...
- Part of the Tensorflow framework but can be used as standalone

tensorboardX (tb wrapper)

- writer = SummaryWriter()
- writer.add_scalar("<name>", <value>, <iter>)
 - Log a scalar values (loss, accuracy, ...)
- writer.add_image("<name>", <value>, <iter>)
 - Log an image (PIL, np.matrix, ...)
- writer.add_histogram("<name>", <value>, <iter>)
 - Log an histogram(weights, gradients, etc...)
- writer.add_audio
- writer.add_text
-

pip install tensorboardx tensorboard==1.13.0 tensorflow==1.13.1

Let us integrate it into our NN

What if I told you...

That exists a framework that does:

- Training, testing and validation
- Early stopping managing
- Tensorboard logging
- Checkpointing and retraining

• ...

With minimal coding required

pytorch-lightning

- Define
 - Model
 - Dataset
 - Training/testing/validation step

That's all

LightningModule interface

- forward(self, x):
 - The forward logic (as in pytorch)
- *_step(self, batch, batch_nb):
 - The *_step logic
- *_end(self, outputs):
 - The * phase end logic
 - outputs are all the intermediate returns of the *_step function calls
- *_loader(self):
 - Must returns the DataLoader for the * phase
- configure_optimizers(self).
 - Must return a list of optimizer to use in training

Where * can be "train" "test" or "validation"

pytorch-lightning

- The train_step() function must return a dictionary with the "loss" key
- Every function that returns a dictionary with the key
 - log
 - every key gets logged in tensorboard as scalar
 - progress_bar
 - every key get prompted in the * phase progress bar
- Training/Testing
 - Instanciate your model
 - Create a Trainer() object
 - trainer.fit(model)
 - trainer.test(model)

Let us integrate our model in pytorch-lightning

Ray

Ray is massive framework for scaling ML training

We are going to see just its "tune"

ray.tune is a framework for hyperparameters tuning at any scale (from a single computer to clusters of GPUs)

Let us do an hyperparameter search with ray