Machine Learning Theory and
Frameworks

In less than two hours

Quick Recap: ML

Dataset

x| v

Training

Quick Recap: SGD

Most of the times we use SGD (Stochastic Gradient Descend) to train our ML models

f(x)

X) me) Y) E(Y)) OE(Y)

p OP

P = P+aP(8%3}/))

Quick Recap: SGD

f(xo,21) = 71 > kg

X1

Quick Recap: SGD

Quick Recap: SGD

Wrong!

Quick Recap: SGD

Quick Recap: SGD

You are computing a gradient

X e RV OK!

Y € RM Sounds fair!
f(X) : RN = RM Of course!

P € R106 No problem!

E(Y) . RM R Never forget this!

Quick Recap: SGD

You are computing a gradient

E(y())yl)"' 7yM—1) : RM = R
Y = f(X|P)
E(Y‘p()apla' e 7pP) : RM = R

-OE(Y|P)A
Opo
OE(Y|P)
VpE(Y|P) =280 _ | o
DE(Y|P)
L Opp -

What is actually going on?

S -

——

Why is stochastic?

Using all the dataset is impossibile

So we use little chunks called batches

Artificial Neural Networks: Topological view

N
O'(W;T; + b)
1=0

Artificial Neural Networks: Mathematical View

r c RN
W e RV*M y1 = o(xWp + bo)
h e RM y2 = o(y1W1 + b1)
S RM _ pM ys = o(y2Wa + b)

y =o(xzW + b)

NN Architectures can be wild!

Auto Encoders

]

NN Architectures can be wild!

GANS

X %
-

Do | need to compute the gradients by hand?

Nope

All ML frameworks use Computational Graphs

Computational Graphs

Computational Graphs

y=b+(a+0b)-a W —7 =7

Computational Graphs

8y ___ Forall the paths from y to a: multiply over the edges.
8& ~ Sum all the results.

Pytorch

* Pytorch is a Computational-Graph based ML framwork
e Python interface, C++/Cuda implementation
* Object Oriented Interface
* Supports CPU/GPU/Multi-GPU transparently
* Very well documented
* Almost everything you need is implemented in it

pip install torch

Pytorch: torch.nn.Module
Building block for a ML architecture

* forward(self, x) [not implemented]
* The forward logic of your module

e parameters(self) [implemented]
 Collection of paremters of all the class attributes

* to(self, device) [implemented]
* Move all the parameters to device

Pytorch: torch.nn.Sequential

net

= torch.nn.Sequential(

torch.
torch.
torch.
torch.
torch.
torch.

torch.

nn.
nn.
nn.

nn
nn
nn

BatchNorm1d(784),
Linear(784, hidden_size),
LeakyReLU(),

.Linear(hidden_size, hidden_size),
.LeakyReLU(),

.Linear(hidden_size, 10),

nn.

Softmax(dim=1)

Pytorch: torch.utils.data.Dataset

Abstract dataset representation

getitem__ (self, i) [not implemented]

* You have to return a tuple with
 i-th input element of the dataset
* i-th output element of the dataset

len__ (self) [not implemented]

* You have to return the lenght of the dataset

Pytorch: torch.utils.data.DatalLoader

Creates batches from a Dataset object

e Positional arguments
* Dataset object

e Keywords arguments
* batch_size: size of the batches
* shuffle: shuffle the dataset?

torch.utils.data.DatalLoader(
dataset,

batch size=batch _size, shuffle=True

Pytorch: Other useful stuff

e torch.nn
» package with every possibile NN building block

 torch.optim
* package with dozens of SGD algorithms

e torchvision
» package with dozens of vision datasets (MNIST, CIFAR, ImageNet,...)

In every scalar tensor you can call .backward() to compute the gradient

Let us build a simple NN

Tensorboard

* Traking and visualization framework for:
* Tracking scalars (loss, accuracy, etc...)
* Traking histograms (weights, gradients, etc..)
* Traking Computational Graphs
* Displaying text, images, etc...

e Part of the Tensorflow framework but can be used as standalone

tensorboardX (tb wrapper)

writer = SummaryWriter()

» writer.add_scalar(“<name>”, <value>, <iter>)
* Log a scalar values (loss, accuracy, ...)

» writer.add_image(“<name>”, <value>, <iter>)
* Log an image (PIL, np.matrix, ...)

» writer.add_histogram(“<name>”, <value>, <iter>)
* Log an histogram(weights, gradients, etc...)

* writer.add_audio

e writer.add_text

pip install tensorboardx tensorboard==1.13.0 tensorflow==1.13.1

Let us integrate it into our NN

What if | told you...

That exists a framework that does:

* Training, testing and validation
 Early stopping managing

* Tensorboard logging

* Checkpointing and retraining

With minimal coding required

oytorch-lightning

e Define
* Model
* Dataset
 Training/testing/validation step

That's all

LightningModule interface

forward(self, x):
* The forward logic (as in pytorch)

* step(self, batch, batch_nb):

 The *_step logic
* _end(self, outputs):

* The * phase end logic

» outputs are all the intermediate returns of the * _step function calls
* loader(self):

* Must returns the Dataloader for the * phase
configure_optimizers(self).

e Must return a list of optimizer to use in training

”n

Where * can be “train” “test” or “validation”

oytorch-lightning

e The train_step() function must return a dictionary with the “loss” key

e Every function that returns a dictionary with the key
* log
» every key gets logged in tensorboard as scalar
* progress_bar
* every key get prompted in the * phase progress bar

* Training/Testing
* Instanciate your model
* Create a Trainer() object

* trainer.fit(model)
* trainer.test(model)

Let us integrate our model in pytorch-lightning

Ray
Ray is massive framework for scaling ML training
We are going to see just its “tune”

ray.tune is a framework for hyperparameters tuning at any scale (from a
single computer to clusters of GPUs)

Let us do an hyperparameter search with ray

