
Machine Learning Theory and 
Frameworks

In less than two hours
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Quick Recap: SGD

Most of the times we use SGD (Stochastic Gradient Descend) to train our ML models
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Quick Recap: SGD
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Quick Recap: SGD
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Quick Recap: SGD

Wrong!



Quick Recap: SGD
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Quick Recap: SGD

You are computing a gradient

OK!

Sounds fair!

Of course!

No problem!

Never forget this!



Quick Recap: SGD

You are computing a gradient



What is actually going on?
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Why is stochastic?
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Using all the dataset is impossibile

So we use little chunks called batches

mean(...)



Artificial Neural Networks: Topological view
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Artificial Neural Networks: Mathematical View



NN Architectures can be wild!
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NN Architectures can be wild!
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Do I need to compute the gradients by hand?

Nope

All ML frameworks use Computational Graphs



Computational Graphs
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Computational Graphs
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Computational Graphs
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For all the paths from y to a: multiply over the edges. 

Sum all the results.

a+b +a = 2a+b



Pytorch

• Pytorch is a Computational-Graph based ML framwork

• Python interface, C++/Cuda implementation

• Object Oriented Interface

• Supports CPU/GPU/Multi-GPU transparently

• Very well documented

• Almost everything you need is implemented in it

pip install torch



Pytorch: torch.nn.Module

• forward(self, x)    [not implemented]

• The forward logic of your module

• parameters(self)  [implemented]

• Collection of paremters of all the class attributes

• to(self, device)     [implemented]

• Move all the parameters to device

Building block for a ML architecture 



Pytorch: torch.nn.Sequential

BN Lin LR Lin LR Lin SMX Y



Pytorch: torch.utils.data.Dataset

• __getitem__(self, i)     [not implemented]

• You have to return a tuple with

• i-th input element of the dataset

• i-th output element of the dataset

• __len__(self)               [not implemented]

• You have to return the lenght of the dataset

Abstract dataset representation



Pytorch: torch.utils.data.DataLoader

• Positional arguments

• Dataset object

• Keywords arguments

• batch_size: size of the batches

• shuffle: shuffle the dataset?

Creates batches from a Dataset object



Pytorch: Other useful stuff

• torch.nn

• package with every possibile NN building block

• torch.optim

• package with dozens of SGD algorithms

• torchvision

• package with dozens of vision datasets (MNIST, CIFAR, ImageNet,...)

In every scalar tensor you can call .backward() to compute the gradient

Let us build a simple NN



Tensorboard

• Traking and visualization framework for:
• Tracking scalars (loss, accuracy, etc...)
• Traking histograms (weights, gradients, etc..)
• Traking Computational Graphs
• Displaying text, images, etc...

• Part of the Tensorflow framework but can be used as standalone



tensorboardX (tb wrapper)

pip install tensorboardx tensorboard==1.13.0 tensorflow==1.13.1

• writer = SummaryWriter()

• writer.add_scalar(“<name>”, <value>, <iter>)

• Log a scalar values (loss, accuracy, ...)

• writer.add_image(“<name>”, <value>, <iter>)

• Log an image (PIL, np.matrix, ...)

• writer.add_histogram(“<name>”, <value>, <iter>)

• Log an histogram(weights, gradients, etc...)

• writer.add_audio

• writer.add_text

• ....

Let us integrate it into our NN



What if I told you...

• Training, testing and validation

• Early stopping managing

• Tensorboard logging

• Checkpointing and retraining

• ...

That exists a framework that does:

With minimal coding required



pytorch-lightning

• Define

• Model

• Dataset

• Training/testing/validation step

That's all



LightningModule interface
• forward(self, x):

• The forward logic (as in pytorch)

• *_step(self, batch, batch_nb):

• The *_step logic 

• *_end(self, outputs):

• The * phase end logic

• outputs are all the intermediate returns of the *_step function calls

• *_loader(self):

• Must returns the DataLoader for the * phase 

• configure_optimizers(self).

• Must return a list of optimizer to use in training

Where * can be “train” “test” or “validation”



pytorch-lightning

• The train_step() function must return a dictionary with the “loss” key

• Every function that returns a dictionary with the key

• log

• every key gets logged in tensorboard as scalar

• progress_bar

• every key get prompted in the * phase progress bar

• Training/Testing

• Instanciate your model

• Create a Trainer() object

• trainer.fit(model)

• trainer.test(model)

Let us integrate our model in pytorch-lightning



Ray

Ray is massive framework for scaling ML training

We are going to see just its “tune”

ray.tune is a framework for hyperparameters tuning at any scale (from a 
single computer to clusters of GPUs)

Let us do an hyperparameter search with ray


